Deciphering Research Trends in AI-Chatbots: A Social Science Perspective Using Bibliometric and Network Visualization Analysis
DOI:
https://doi.org/10.17821/srels/2025/v62i1/171668Keywords:
Artificial Intelligence, Chatbots, Descriptive Analysis, Human-Computer Interaction, Network AnalysisAbstract
Chatbots have emerged as a transformative technology across various sectors, necessitating a comprehensive analysis of the directions of the intellectual and social landscape. This study addresses the current state of the intellectual and social structure of AI chatbots in social science over the past three decades by employing a systematic approach using the Scopus database, yielding 1358 articles. The current state of research and future directions of this field were examined using bibliographic coupling and keyword analysis. Data visualization and analysis were also carried out using RStudio in conjunction with VOS viewer and MS Excel. The findings indicate that research on chatbots has evolved over the past three decades. Utilizing keyword analysis, six distinct clusters of research were identified. The co-authorship network and bibliographic coupling analysis suggest that the USA and China, two countries with very different economies, histories, cultures, and locations have the highest number of cross-national chatbot study collaborations.
Downloads
References
Adamopoulou, E., & Moussiades, L. (2020). Chatbots: History, technology, and applications. Machine Learning with Applications, 2, Article 100006. https://doi.org/10.1016/j.mlwa.2020.100006
Agarwal, S., Agarwal, B., & Gupta, R. (2022). Chatbots and virtual assistants: A bibliometric analysis. Library Hi Tech, 40(4), 1013-1030. https://doi.org/10.1108/LHT-09-20210330
Ahmed, D. (2021). Anthropomorphizing artificial intelligence: Towards a user-centered approach for addressing the challenges of over-automation and design understandability in smart homes. Intelligent Buildings International, 13(4), 227-240. https://doi.org/10.1080/175 08975.2020.1795612
Al-Zahrani, A. M., & Alasmari, T. M. (2024). Exploring the impact of artificial intelligence on higher education: The dynamics of ethical, social, and educational implications. Humanities and Social Sciences Communications, 11(1), 1-12. https://doi.org/10.1057/s41599-024-03432-4
Anthes, G. (2017). Artificial intelligence poised to ride a new wave. Communications of the ACM, 60(7), 19-21. https://doi.org/10.1145/3088342
Anwar, K., Siddiqui, J., & Sohail, S. S. (2020). Machine learningbased book recommender system: A survey and new perspectives. International Journal of Intelligent Information and Database Systems, 13(2-4), 231-248. https://doi.org/10.1504/ijiids.2020.109457
Apple. (n.d.). Siri. https://www.apple.com/siri/ Callon, M., Courtial, J.-P., Turner, W. A., & Bauin, S. (1983). From translations to problematic networks: An introduction to co-word analysis. Social Science Information, 22(2), 191-235. https://doi.org/10.1177/053901883022002003
Chen, Y. F., Everett, M., Liu, M., & How, J. P. (2017). Socially aware motion planning with deep reinforcement learning. https://doi.org/10.48550/ARXIV.1703.08862
Cicco, R. D., Silva, S. C., & Alparone, F. R. (2020). Millennials’ attitude toward chatbots: An experimental study in a social relationship perspective. International Journal of Retail and Distribution Management, 48(11), 1213-1233. https://doi.org/10.1108/IJRDM-12-2019-0406
Colby, K. M., Weber, S., & Hilf, F. D. (1971). Artificial paranoia. Artificial Intelligence, 2(1), 1-25. https://doi.org/10.1016/0004-3702(71)90002-6
Deo, V. N., Mohal, S. M., & Survey, S. S. (1995). Bibliometric study of doctoral dissertations on English language and literature. ALIS, 42(3). http://nopr.niscpr.res.in/handle/123456789/27583
Diederich, S., Brendel, A., Morana, S., & Kolbe, L. (2022). On the design of and interaction with conversational agents: An organizing and assessing review of humancomputer interaction research. Journal of the Association for Information Systems, 23(1), 96-138. https://doi.org/10.17705/1jais.00724
Digital Trends. (n.d.). What is Amazon Alexa, and what can it do? https://www.digitaltrends.com/home/what-isamazonsalexa-and-what-can-it-do/
Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. 2017. Dermatologist- level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. https://doi.org/10.1038/nature21056
Goar, V., Yadav, N. S., & Yadav, P. S. (2023). Conversational AI for Natural Language Processing: An review of ChatGPT. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3s), 109-117. https:// doi.org/10.17762/ijritcc.v11i3s.6161
Google. (n.d.). Google Assistant, your own personal Google. https://assistant.google.com/intl/en_in/
Guimarães, M., Prada, R., Santos, P. A., Dias, J., Jhala, A., & Mascarenhas, S. (2020). The impact of virtual reality in the social presence of a virtual agent. Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents. https://doi.org/10.1145/3383652.3423879
Haleem, A., Javaid, M., & Singh, R. P. (2022). An era of ChatGPT as a significant futuristic support tool: A study on features, abilities, and challenges. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 2(4), Article 100089. https://doi.org/10.1016/j.tbench.2023.100089
Huang, D., Markovitch, D. G., & Stough, R. A. (2024). Can chatbot customer service match human service agents on customer satisfaction? An investigation in the role of trust. Journal of Retailing and Consumer Services, 76, Article 103600. https://doi.org/10.1016/j.jretconser.2023.103600
IBM. (n.d.). Watson Assistant—Virtual Agent. https://www.ibm.com/products/watson-assistant
Io, H. N., & Lee, C. B. (2017). Chatbots and conversational agents: A bibliometric analysis. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM. https://doi.org/10.1109/ IEEM.2017.8289883
Jain, J., Walia, N., Singh, S., & Jain, E. (2022). Mapping the field of behavioural biases: A literature review using bibliometric analysis. Management Review Quarterly, 72(3), 823-855. https://doi.org/10.1007/s11301-021-00215-y
Kaya, F., Aydin, F., Schepman, A., Rodway, P., Yetişensoy, O., & Demir Kaya, M. (2024). The roles of personality traits, AI anxiety, and demographic factors in attitudes towards Artificial Intelligence. International Journal of HumanComputer Interaction, 40(2), 497-514. https://doi.org/10.10 80/10447318.2022.2151730
Khosravi, H., Shafie, M. R., Hajiabadi, M., Raihan, A. S., & Ahmed, I. (2023). Chatbots and ChatGPT: A bibliometric analysis and systematic review of publications in Web of Science and Scopus Databases. International Journal of Data Mining, Modelling and Management, 16(2), 113-147. https://doi.org/10.1504/IJDMMM.2024.138824
Koseoglu, M. A. (2016). Growth and structure of authorship and co-authorship network in the strategic management realm: Evidence from the Strategic Management Journal. BRQ Business Research Quarterly, 19(3), 153-170. https://doi.org/10.1016/j.brq.2016.02.001
Kusal, S., Patil, S., Choudrie, J., Kotecha, K., Mishra, S., & Abraham, A. (2022). AI-based conversational agents: A scoping review from technologies to future directions: Conversational agents. IEEE Access, 10, 92337-92356. https://doi.org/10.1109/ACCESS.2022.3201144
Lin, Y., & Yu, Z. (2023). A bibliometric analysis of artificial intelligence chatbots in educational contexts. Interactive Technology and Smart Education, 21(2), 189-213. https://doi.org/10.1108/ITSE-12- 2022-0165
Ling, E. C., Tussyadiah, I., Tuomi, A., Stienmetz, J., & Ioannou, A. (2021). Factors influencing users’ adoption and use of conversational agents: A systematic review. Psychology and Marketing, 38(7), 1031-1051. https://doi.org/10.1002/ mar.21491
Liu, L., & Duffy, V. G. (2023). Exploring the future development of Artificial Intelligence (AI) applications in chatbots: A bibliometric analysis. International Journal of Social Robotics, 15(5), 703-716. https://doi.org/10.1007/s12369-022-00956-0
Lops, P., De Gemmis, M., & Semeraro, G. (2011). Contentbased recommender systems: State of the art and trends. In F. Ricci, L. Rokach, B. Shapira, & P. B. Kantor (Eds.), Recommender Systems Handbook (pp. 73-105). Springer US. https://doi.org/10.1007/978-0-387-85820-3_3
Mah, P. M., Skalna, I., & Muzam, J. (2022). Natural Language Processing and Artificial Intelligence for enterprise management in the Era of Industry 4.0. Applied Sciences, 12(18), Article 18. https://doi.org/10.3390/app12189207
Manigandan, L., & Sivakumar, A. (2024). Chatbot research: Unveiling evolutionary trends and collaborative pathways through bibliometric analysis. Multidisciplinary Reviews, 7(3), 2024045- 2024045. https://doi.org/10.31893/multirev.2024045
Mariciuc, D. F. (2022). A bibliometric review of chatbots in the context of customer support. Journal of Public Administration, Finance and Law, 26, 206-217. https://doi.org/10.47743/jopafl-2022-26-18
Microsoft. (n.d.). Cortana—Your personal productivity assistant. https://adoption.microsoft.com/en-us/virtualhub/ modern-work/cortana/
Nelekar, S., Abdulrahman, A., Gupta, M., & Richards, D. (2022). Effectiveness of embodied conversational agents for managing academic stress at an Indian University (ARU) during COVID-19. British Journal of Educational Technology, 53(3), 491-511. https://doi.org/10.1111/bjet.13174
Ni, Z., Peng, M. L., Balakrishnan, V., Tee, V., Azwa, I., Saifi, R., Nelson, L. E., Vlahov, D., & Altice, F. L. (2024). Implementation of Chatbot Technology in Health Care: Protocol for a bibliometric analysis. JMIR Research Protocols, 13(1), Article e54349. https://doi.org/10.2196/54349
Park, S., Choi, W. J., & Shin, D. (2021). Who makes you more disappointed? The effect of avatar presentation, company market status, and agent identity on customers’ perceived service quality and satisfaction of online chatting services. Asia Marketing Journal, 23(3). https://doi.org/10.53728/2765-6500.1577
Paul, J., Lim, W. M., O’Cass, A., Hao, A. W., & Bresciani, S. (2021). Scientific procedures and rationales for systematic literature reviews (SPAR-4-SLR). International Journal of Consumer Studies, 45(4). https://doi.org/10.1111/ijcs.12695
Pears, M., & Konstantinidis, S. (2022). Bibliometric analysis of chatbots in health-trend shifts and advancements in Artificial Intelligence for personalized conversational agents. In P. Otero, P.
Scott, S. Z. Martin, & E. Huesing (Eds.), Studies in Health Technology and Informatics. IOS Press. https://doi.org/10.3233/SHTI220125
Pentina, I., Hancock, T., & Xie, T. (2023). Exploring relationship development with social chatbots: A mixed-method study of Replika. Computers in Human Behavior, 140, Article 107600. https://doi.org/10.1016/j.chb.2022.107600
Ramya, J. B., & Alur, S. (2023). Unleashing the potential of chatbots in business: A bibliometric analysis. Business Information Review, 40. https://doi.org/10.1177/02663821231189344
Sundar, S. S., Bellur, S., Oh, J., Jia, H., & Kim, H.-S. (2016). Theoretical importance of contingency in humancomputer interaction: Effects of message interactivity on user engagement. Communication Research, 43(5), 595625. https://doi.org/10.1177/0093650214534962
Symons, J., & Abumusab, S. (2023). Social agency for artifacts: Chatbots and the ethics of artificial intelligence. Digital Society, 3(1), Article 2. https://doi.org/10.1007/s44206-02300086-8
Tanwar, M., & Verma, H. V. (2024). Scientific mapping of chatbot literature: A bibliometric analysis. International Journal of Mathematical, Engineering and Management Sciences, 9(2), 323-340. https://doi.org/10.33889/IJMEMS.2024.9.2.017
Tepe, G., Geyikci, U. B., & Sancak, F. M. (2021). FinTech companies: A bibliometric analysis. International Journal of Fuzzy Systems, 10(1). https://ideas.repec.org//a/gam/jijfss/v10y2021i1p2-d712772.html
Toader, D.-C., Boca, G., Toader, R., Măcelaru, M., Toader, C., Ighian, D., & Rădulescu, A. T. (2020). The effect of social presence and chatbot errors on trust. Sustainability, 12(1), Article 1. https://doi.org/10.3390/su12010256
Tsai, W.-H. S., Liu, Y., & Chuan, C.-H. (2021). How chatbots’ social presence communication enhances consumer engagement: The mediating role of parasocial interaction and dialogue. Journal of Research in Interactive Marketing, 15(3), 460-482. https://doi.org/10.1108/JRIM-12-2019-0200
Veras, M., Dyer, J.-O., Rooney, M., Silva, P. G. B., Rutherford, D., & Kairy, D. (2023). Usability and efficacy of Artificial Intelligence Chatbots (ChatGPT) for health sciences students: Protocol for a crossover randomized controlled trial. JMIR Research Protocols, 12(1), Article e51873. https://doi.org/10.2196/51873
Wahjusaputri, S., Nastiti, T. I., Bunyamin, B., & Sukmawati, W. (2024). Development of artificial intelligence-based teaching factory in vocational high schools in Central Java Province. Journal of Education and Learning (EduLearn), 18(4), Article 4. https://doi.org/10.11591/edulearn.v18i4.21422
Wei, X., Chu, X., Geng, J., Wang, Y., Wang, P., Wang, H., Wang, C., & Lei, L. (2024). Societal impacts of chatbot and mitigation strategies for negative impacts: A large-scale qualitative survey of ChatGPT users. Technology in Society, 77, Article 102566. https://doi.org/10.1016/j.techsoc.2024.102566
Weizenbaum, J. (1966). ELIZA — a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36-45. https://doi.org/10.1145/365153.365168
Xu, Y., Niu, N., & Zhao, Z. (2023). Dissecting the mixed effects of human-customer service chatbot interaction on customer satisfaction: An explanation from temporal and conversational cues. Journal of Retailing and Consumer Services, 74, Article 103417. https://doi.org/10.1016/j.jretconser.2023.103417
Yuki, L. K., Anoegrajekti, N., Lustyantie, N., & Abdullah, K. H. (2025). Mapping the intersection of e- learning, culture, and tradition: A bibliometric analysis. Journal of Education and Learning (EduLearn), 19(2), Article 2. https://doi.org/10.11591/edulearn.v19i2.21199
Zainuldin, M. H., & Lui, T. K. (2022). A bibliometric analysis of CSR in the banking industry: A decade study based on Scopus scientific mapping. International Journal of Bank Marketing, 40(1), 1-26. https://doi.org/10.1108/IJBM-04-2020-0178
Zhu, S., Hu, W., Li, W., & Dong, Y. (2024). Virtual agents in immersive virtual reality environments: impact of humanoid avatars and output modalities on shopping experience. International Journal of Human-Computer Interaction, 40(19), 5771-5793. https://doi.org/10.1080/10447318.2023.2241293
Zlotowski, J., Proudfoot, D., Yogeeswaran, K., & Bartneck, C. (2014). Anthropomorphism: Opportunities and challenges in human-robot interaction. International Journal of Social Robotics, 7(3). https://pub.uni-bielefeld.de/record/2908428
Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational Research Methods, 18(3), 429-472. https://doi.org/10.1177/1094428114562629
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Journal of Information and Knowledge

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
All the articles published in Journal of Information and Knowledge are held by the Publisher. Sarada Ranganathan Endowment for Library Science (SRELS), as a publisher requires its authors to transfer the copyright prior to publication. This will permit SRELS to reproduce, publish, distribute and archive the article in print and electronic form and also to defend against any improper use of the article.