Development of CODO: A Comprehensive Tool for COVID-19 Data Representation, Analysis, and Visualization

Authors

  • Documentation Research and Training Centre (DRTC), Indian Statistical Institute, Bengaluru – 560059, Karnataka
  • Documentation Research and Training Centre (DRTC), Indian Statistical Institute, Bengaluru – 560059, Karnataka

DOI:

https://doi.org/10.17821/srels/2024/v61i5/171582

Keywords:

Analytics, CODO, COVID-19, Coronavirus, Ontology, Methodology, Model, Reasoning

Abstract

Artificial Intelligence (AI) has become indispensable for managing and processing the vast amounts of data generated during the COVID-19 pandemic. Ontology, which formalizes knowledge within a domain using standardized vocabularies and relationships, plays a crucial role in AI by enabling automated reasoning, data integration, semantic interoperability, and extracting meaningful insights from extensive datasets. The diversity of COVID-19 datasets poses challenges in comprehending this information for both humans and machines. Existing COVID-19 ontologies are designed to address specific aspects of the pandemic but lack comprehensive coverage across all essential dimensions. To address this gap, CODO, an integrated ontological model has been developed encompassing critical facets of COVID-19 information such as aetiology, epidemiology, transmission, pathogenesis, diagnosis, prevention, genomics, therapeutic safety, and more. This paper reviews CODO since its inception in 2020, detailing its developments and highlighting CODO as a tool for the aggregation, representation, analysis, and visualization of diverse COVID-19 data. The major contribution of this paper is to provide a summary of CODO’s development and outline the overall development and evaluation approach. By adhering to best practices and leveraging W3C standards, CODO ensures data integration and semantic interoperability, supporting effective navigation of COVID-19 complexities across various domains.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Al Qundus, J. (2021). ROC: An ontology for country responses towards COVID-19. arXiv. https://doi.org/10.48550/ arXiv.2104.07345

Badenes-Olmedo, C., Chaves-Fraga, D., Poveda-Villalón, M., Iglesias-Molina, A, Fernández-Izquierdo, A., AmadorDomínguez, E., …, Corcho, O. (2020). Drugs4Covid: Drug-driven knowledge exploitation based on scientific publications. arXiv. https://doi.org/10.48550/arXiv.2012.01953

Bain, D., & Dutta, B. (2023). Systematic analysis of COVID-19 ontologies [Conference presentation]. 17th International Conference on Metadata and Semantics Research (MTSR 2023), University of Milano-Bicocca, Italy. https://doi.org/10.48550/arXiv.2310.18315

Biswanath, D., Nandini, D., & Shahi, G. K. (2015). MOD: Metadata for ontology description and publication [Conference presentation]. International Conference on Dublin Core and Metadata Applications. https://doi.org/10.23106/DCMI.952136974

Bonino, L. (2020). WHO COVID-19 rapid version CRF semantic data model. BioPortal. https://bioportal.bioontology.org/ ontologies/COVIDCRFRAPID

Caucheteur, D., Pendlington, Z. M., Roncaglia, P., Gobeill, J., Mottin, L., Matentzoglu, L., …, Ruch, P. (2023). COVoc and COVTriage: Novel resources to support literature triage. Bioinformatics, 39(1). https://doi.org/10.1093/bioinformatics/btac800

DeBellis, M., & Dutta, B. (2022). From ontology to knowledge graph with agile methods: The case of COVID-19 CODO knowledge graph. International Journal of Web Information Systems, 18(5/6), 432-452. https://doi.org/10.1108/IJWIS03-2022-0047

de Lusignan, S., Liyanage, H., McGagh, D., Jani B. D., Bauwens, J., Byford, R., …, Hobbs, F. D. R. (2020). COVID19 surveillance in a primary care sentinel network: In-pandemic development of an application ontology. JMIR Public Health and Surveillance, 6(4), Article e21434. https://doi.org/10.2196/21434

Dhama, K., Khan, S., Tiwari, R., Sircar, S., Bhat, S., Malik, Y. S., …, Rodriguez-Morales, A. J. (2020). Coronavirus disease 2019–COVID-19. Clinical Microbiology Reviews, 33(4), Article e00028-20. https://doi.org/10.1128/CMR.00028-20

DuCharme, B. (n.d.) Learning SPARQL. http://www.learningsparql.com. Accessed on 27 June 2023.

Dutta, B., Das, P., & Mitra, S. (2022). A survey and classification of publicly available COVID-19 datasets. Annals of Library and Information Studies, 69(3). https://doi.org/10.56042/alis.v69i3.58950

Dutta, B., Chatterjee, U., & Madalli, D. P. (2015). YAMO: Yet another methodology for large-scale faceted ontology construction. Journal of Knowledge Management, 19(1), 6-24. https://doi.org/10.1108/JKM-10-2014-0439

Dutta, B., & DeBellis, M. (2020). CODO: An ontology for collection and analysis of Covid-19 data. Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, 76-85. https://doi.org/10.5220/0010112500760085

Fernández-López, M. (1997). Methontology: From ontological art towards ontological engineering. Engineering Workshop on Ontological Engineering (AAAI97).

Filip, R, Puscaselu, R. G., Anchidin-Norocel, L., Dimian, M., & Savage, W. K. (2022). Global challenges to public health care systems during the COVID-19 pandemic: A review of pandemic measures and problems. Journal of Personalized Medicine, 12(8), Article 1295. https://doi.org/10.3390/jpm12081295

Giunchiglia, F., Bocca, S., Fumagalli, M., Bagchi, M., & Zamboni, A. (2021). iTelos -- Purpose driven knowledge graph generation. arXiv. https://doi.org/10.48550/arXiv.2105.09418

González-Eras, A., Dos Santos, R., Aguilar, J., & Lopez, A. (2022). Ontological engineering for the definition of a COVID-19 pandemic ontology. Informatics in Medicine Unlocked, 28, Article 100816. https://doi.org/10.1016/j.imu.2021.100816

He, Y., Yu, H., Ong, E., Wang, Y., Liu, Y., Huffman, A., …, Smith, B. (2020). CIDO, a community-based ontology for coronavirus disease knowledge and data integration, sharing, and analysis. Scientific Data, 7(1), Article 181. https://doi.org/10.1038/s41597-020-0523-6

Jean, S.-S., Lee, P. I., Hsueh, P-R. (2020). Treatment options for COVID-19: The reality and challenges. Journal of Microbiology, Immunology, and Infection, 53(3), 436-443. https://doi.org/10.1016/j.jmii.2020.03.034

Keet, C. M. (2021). Bias in ontologies -- A preliminary assessment. arXiv. https://doi.org/10.48550/arXiv.2101.08035

Keet, C. M., & Grütter, R. (2021). Toward a systematic conflict resolution framework for ontologies. Journal of Biomedical Semantics, 12(1), Article 15. https://doi.org/10.1186/ s13326-021-00246-0

Keloth, V. K., Zhou, S., Lindemann, L., Elhanan, G., Einstein, A. J., Geller, J., & Perl, Y. (2020). Mining concepts for a COVID interface terminology for annotation of EHRs [Conference presentation]. 2020 IEEE International Conference on Big Data (Big Data), Atlanta, GA, USA. https://doi.org/10.1109/BigData50022.2020.9377981

Lin, A. Y., Yamagata, Y., Duncan, W. D., Carmody, L. C., Kushida, T., Masuya, H., …, He, Y. (2022). A community effort for COVID-19 ontology harmonization. CEUR Workshop Proceedings, 3073, 122-27.

OntoDebug. (n.d.). Interactive ontology debugging in Protégé. http://isbi.aau.at/ontodebug/. Accessed on 18 July 2023.

Poveda-Villalón, M., Gómez-Pérez, A., Suárez-Figueroa, M. C. (2014). OOPS! (OntOlogy Pitfall Scanner!): An on-line tool for ontology evaluation. International Journal on Semantic Web and Information Systems, 10(2), 7-34. https://doi.org/10.4018/ijswis.2014040102

Protégé. (n.d.). https://protege.stanford.edu/. Accessed on 27 June 2023.

Silega, N., Varén, E., Varén, A., Rogozov, Y. I. , Lapshin, V. S., & Alekseevich, S. A. (2022). Exploiting an ontological model to study COVID-19 contagion chains in sustainable smart cities. Information, 13(1), Article 40. https://doi.org/10.3390/info13010040

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. https://doi.org/10.2139/ssrn.3199351

Suárez-Figueroa, M. C., Gómez-Pérez, A., & FernándezLópez, M. (2012). The neon methodology for ontology engineering. Ontology Engineering in A Networked World, (pp. 9–34). https://doi.org/10.1007/978-3-64224794-1_2

Toumia, S., & Mejri, A. (2021). An ontology-based approach for conformance checking of decision mining rules [Conference presentation]. ICSEA 2021: The Sixteenth International Conference on Software Engineering Advances.

Vrandečić, D., Pinto, S., Tempich, C., & Sure, Y. (2005). The DILIGENT knowledge processes. Journal of Knowledge Management, 9(5), 85-96. https://doi.org/10.1108/13673270510622474

Wang, X, Liang, T., Li, T., Roy, S., Pandey, V., Du, Y., & Kong, J. (2021). Artificial intelligence-empowered chatbot for effective COVID-19 information delivery to older adults. International Journal of E-Health and Medical Communications, 12(6), 1-18. https://doi.org/10.4018/IJEHMC.293285

Wu, H., Zhong, Y., Tian, Y., Jiang, S., & Luo, L. (2021). Automatic diagnosis of COVID-19 infection based on ontology reasoning. BMC Medical Informatics and Decision Making, 21(S9), Article 271. https://doi.org/10.1186/s12911-021-01629-0

Xiao, Y., Zheng, X., Song, W., Tong, F, Mao, Y., Liu, S., & Zhao, D. (2021). CIDO-COVID-19: An ontology for COVID-19 based on CIDO [Conference presentation]. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Mexico. https://doi.org/10.1109/EMBC46164.2021.9629555

Yongqun, H., Yu, H., Huffman, A., Lin, A. Y., Natale, D. A., Beverley, J, .…, Smith, B. (2022). A comprehensive update on CIDO: The community-based coronavirus infectious disease ontology. Journal of Biomedical Semantics, 13(1), Article 25. https://doi.org/10.1186/s13326-022-00279-z

Published

2024-10-21

How to Cite

Dutta, B., & Bain, D. (2024). Development of CODO: A Comprehensive Tool for COVID-19 Data Representation, Analysis, and Visualization. Journal of Information and Knowledge, 61(5), 245–253. https://doi.org/10.17821/srels/2024/v61i5/171582

Issue

Section

Articles