Machine Learning and Bibliographic Data Universe: Assessing Efficacy of Backend Algorithms in Annif through Retrieval Metrics

Authors

  • Department of Library and Information Science, University of Kalyani, Kalyani − 741235, West Bengal

DOI:

https://doi.org/10.17821/srels/2023/v60i1/170891

Keywords:

Annif, Automated Indexing, Machine Learning, NDCG, Neural Network Model, Retrieval Metrics.

Abstract

This research study utilizes an open source AI/ML framework named Annif, developed by the National Library of Finland, to explore the feasibility of automated subject indexing. The framework loads the linked open data format of LCSH and trains the model with a comprehensive training dataset comprising MARC records downloaded from different libraries all over the world. It then compares a set of selected machine learning backends of Annif, namely TF-IDF, Omikuji, and Neural Network, against a set of retrieval metrics to measure the suitability of these backends for the bibliographic data universe. The study concludes that the fusion backend in Annif named Neural Network has the potential to provide support for an automated subject indexing system.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Anderson, J. D., & Pérez-Carballo, J. (2001). The nature of indexing: How humans and machines analyze messages and texts for retrieval. Part I: Research, and the nature of human indexing. Information Processing & Management, 37(2), 231-254. https://doi.org/10.1016/S0306-4573(00)00026-1

Asula, M., Makke, J., Freienthal, L., Kuulmets, H.-A., & Sirel, R. (2021). Kratt: Developing an automatic subject indexing tool for the national library of Estonia. Cataloging and Classification Quarterly, 59(8), 775-793. https://doi.org/10.1080/01639374.2021.1998283

Frank, E., & Paynter, G. W. (2004). Predicting Library of Congress classifications from Library of Congress subject headings. Journal of the American Society for Information Science and Technology, 55(3), 214-227. https://doi.org/10.1002/asi.10360

Golub, K. (2021). Automated subject indexing: An overview. Cataloging and Classification Quarterly, 59(8), 702-719. https://doi.org/10.1080/01639374.2021.2012311

Hahn, J. (2021). Semi-automated methods for bibframe work entity description. Cataloging and Classification Quarterly, 59(8), 853-867. https://doi.org/10.1080/0163 9374.2021.2014011

Hahn, J. (2022). Cataloger acceptance and use of semiautomated subject recommendations for web scale linked data systems. IFLA WLIC, 2022, 10. Available from: https://repository.ifla.org/bitstream/123456789/1955/1/062-hahn-en.pdf

Joorabchi, A., & Mahdi, A. E. (2013). Classification of scientific publications according to library controlled vocabularies: A new concept matching-based approach. Library Hi Tech, 31(4). https://doi.org/10.1108/LHT-03-2013-0030

Junger, U. (2017). Automation first - the subject cataloguing policy of the Deutsche Nationalbibliothek. Available from: http://library.ifla.org/id/eprint/2213/

Möller, G., Carstensen, K.-U., Diekmann, B., & Wätjen, H. (1999). Automatic classification of the world-wide web using the universal decimal classification. National Agricultural Library. (2014). NFAIS Webinar: automated indexing: A case study from the national agricultural library | ISSN. https://www.issn.org/ newsletter_issn/nfais-webinar-automated-indexing-acase-study-from-the-national-agricultural-library/

National Library of Medicine (NLM). (2002). NLM Medical Text Indexer (MTI). https://lhncbc.nlm.nih.gov/ii/tools/MTI.html

Mukhopadhyay, P. (2022). AI/ML applications for knowledge organization in libraries: Designing a semi-automated subject indexing system based on LCSH. In M. Visakaruban et al., (Eds.), Proceedings of the Etakam Research Conference: enhancing library system to best engage with Global Change 2022 (ERC 2022) (pp. 11-19). University of Jafna.

OCLC. (2022, June 8). Scorpion. OCLC. Available from: https://www.oclc.org/research/activities/scorpion.html

Oliver, C. (2021). Leveraging KOS to extend our reach with automated processes. Cataloging and Classification Quarterly, 59(8), 868-874. https://doi.org/10.1080/01639374.2021.2023717

Silvester, J. P. (1997). Computer supported indexing: A history and evaluation of NASA’s MAI system. Supplement 24. Undefined. Available from: https://www.semanticscholar.org/paper/Computer-Supported-Indexing%3A-A-History-and-of-MAI-Silvester/14e5f28 26fd1bd245edaf26a67c5f696a65b5032

Suominen, O. (2019). Annif: DIY automated subject indexing using multiple algorithms. LIBER Quarterly: The Journal of the Association of European Research Libraries, 29(1), 1-25. https://doi.org/10.18352/lq.10285

Suominen, O., & Koskenniemi, I. (2022). Annif analyzer shootout: Comparing text lemmatization methods for automated subject indexing. The Code4Lib Journal, 54. Available from: https://journal.code4lib.org/articles/16719

Suominen, O., Inkinen, J., & Lehtinen, M. (2022). Annif and Finto AI: Developing and implementing automated subject indexing. JLIS.It, 13(1), 265-282. https://doi.org/10.4403/jlis.it-12740

Toepfer, M., & Seifert, C. (2020). Fusion architectures for automatic subject indexing under concept drift: Analysis and empirical results on short texts. International Journal on Digital Libraries, 21, 169-189. https://doi.org/10.1007/s00799-018-0240-3

Published

2023-03-27

How to Cite

Mukhopadhyay, P. (2023). Machine Learning and Bibliographic Data Universe: Assessing Efficacy of Backend Algorithms in Annif through Retrieval Metrics. Journal of Information and Knowledge, 60(1), 39–48. https://doi.org/10.17821/srels/2023/v60i1/170891

Issue

Section

Invited Paper

Most read articles by the same author(s)

1 2 > >>